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Received 25 February 1991 

Abstract. The energy spectrum, the density of states, the electron probability 
distributions and the magnetization of a Ga~_,AI,A.-GaAs-G~~_,AI~As quantum 
well in stmng tilted magnetic fields B = (B,,O,B,) are calarlated. It is shown 
that the spectrum and the probability densities of the states bound in the quantum 
well would change little if the coupling Hamiltonian Y BIBz were to be neglected. 
Localized states appear above the barrier edge. The mawetization parallel to the 
lapr interfaces exbibits oscillations and sharp jumps as a function of the chemical 
potential. It remains to be seen whether these jumps may serve as the basis for a 
dissipation free switching device. 

1. Introduction 

&cent investigations of the energy spectrum and the magnetization of quantum wells 
(QWs) in high magnetic fields oriented parallel to the interfaces showed the existence 
of localized states and oscillations of the magnetization as a function of the chemical 
potential 11, 21, see also [3, 41. Localization occurs in the barrier for certain values 
of the (quasi-)continuous momentum hk, of motion parallel to the interfaces and 
perpendicular to the field. Since the total energy varies continuously with k, no energy 
gaps separate the localized barrier states from the delocalized ones. Therefore, it will 
be quite impossible to achieve a stable overpopulation of these states which might be 
desirable for a magnetically tunable laser. However, if a magnetic field component B, 
normal to the interfaces is present, and if one takes into account size quantization due 
to the finite width of the heterojunction, one may have degenerate localized states in 
the barriers, or at the rim of the effective total potential, separated by energy gaps 
from the neighbouring states. This can be concluded from the energy spectra and 
charge density distributions computed in this article for various tilt angles 8 of the 
magnetic field B .  Furthermore, we compute the +-component of the magnetization 
as a function of the chemical potential and interpret its oscillations and dwontinous 
jumps with the help of the energy spectrum. 

2. Method 

We consider a Ga,-,AI,As-GaAs-Ga,-,AlzAs heterojunction of total width 2L,. 
The GaAs layer extends between - 4 2  < z < 4 2 .  We model the system by a scalar 
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potential V ( z )  with O(z)  = 0 for IzI < a/2, O ( Y )  = V for a/2 < IzI < L, and 
U ( Y )  = 00 for I Y [  > L,. The tilted magnetic field is B = e,Ecosd +e,Bsind.  For 
the vector potential we choose a gauge such that A = e,(zBsin 19 - %B cos$). 

For the envelope wavefunction in the effective mass approximation we make the 
ansalz W(z, y, Y )  = (l/&) exp{ikyy}$(z, 2). After substituting z by I + zo where 
xo := -iik,/eBsind we obtain the Schrodinger equation 

G Man and R KCmmeI 

( H ,  + H,, + H S ) $ b , z )  = E N z ,  z) .  (1) 

The three components of the total Hamiltonian are 

with 

being the harmonic oscillator potential due to B, 

with 

being the superposition of the QW potential and the harmonic oscillator potential due 
to E,. The coupling Hamiltonian 

H,, = -X2- (eB)z  z cos dz sin 0 
2m 

couples the motion in the harmonic oscillator potential P ( z )  of H,, with the motion 
in the effective potential U,&) of H,. If we had a parabolic QW potential O(z), 
equation (1) could be decoupled by a suitable coordinate transformation [5 ] .  This 
cannot be done in our case of a rectangular QW. Therefore, X has been introduced 
formally into equation (6) in order to analyse the influence of Hs.: if H,, is taken 
into acount X = 1, and if H,, is neglected X = 0. Since ky does not appear explicitly 
in equation (l), we get the same eigenvalues for different k,, i.e. each eigenvalue has 
a degeneracy (per unit area) which turns out to be eBsind/2ah. 

The calculation of the eigenfunctions and eigenstates is done in two steps: 

(i) First we set X = 0 in H,, in equation (6). Then we can separate equation (1) 
and solve 

Hz?r(") = E;?&) (7) 

by the harmonic oscillator eigenfunctions a ( z )  with the eigenvalues 

E?= (I-$)h-sand e€? . 1 = 1 , 2 , 3  .... m 
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In order to solve 

Hapn(z) = Eipp,(z) n =  1 , 2 , 3  ... (9) 

we develop its eigenfunctions pn(z) in terms of the (trigonometric) eigenfunctions of 
an infinite potential well of width 2L,. Thus, we obtain a representation of H, by 
matrix elements formed with the trigonometric functions. This matrix is being trans- 
formed into a tridiagonal matrix by the Lanczos method 161 and finally diagonaliied 
numerically. 

(ii) In the second step we set X = 1 and take the functions vI(c) and vn(z) as the 
complete basis for the expansion of the solution $(z, z )  of equation (1): 

The advantage of this procedure is that JIs and H ,  are already diagonal, whereas H,, 
can be arranged into a hand matrix and diagonalized easily. 

For the numerical calculations the Schrodinger equation (1) is written in di- 
mensionless coordinates ( Z , q  = (z/u,z/Q), energies ,i? = E2ma2/hz, potentials 

= V2ma2/h2, and fields B = Bea2/h. Thus the spectrum obtained for one set 
of parameters B and a has exactly the same structure as the spectrum for a second 
set of parameters B' and a' if 

E=(;>" B' 
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Figure 1. ( a )  Energy spectrum of an isolated Gao.sAlo.zArCaAs-Gao.aAlo.2AS 
Q W  in a magnetic field B = 15 T (for X = 1) as a function of the tilt angle 9. (To 
the left of the line 4 - A  states are  missing, see text.) ( b )  Energy spectrum for the 
same situation as in (a),  but the coupling Hamiltonian H,, is neglected (A  = 0). 
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3. Energy spec t rum and density of states 

We assume the following GaAs-Ga,_,Al,As QW parameters: The well width is a = 
15 nm, the band-offset is 60%, and z = 0.20 so tbat the potential height is V = 
147 meV [q. An effective mass m = 0.0665 m, is assumed, m, is the free electron mass. 
For these parameters and for B = 15 T we get the energy spectra shown in figures l (a )  
and (6)  where the spin splitting is neglected. According to equation (11) these are also 
the spectra for, e.g., a’ = 20 nm, 5’ = 8.4 T, or a” = 25 nm, 5” = 5.4 T, if the energy 
scale is multiplied by or (a/a”)’. For the sake of clarity figures l (a)  and (6) 
only show the tilt angle dependence of those energy levels which evolve from the 15 
lowest states of the quasi-continuum in each of the first three sub-bands at tilt angle 
9 = 0’. (Thus, the energy spectrum is incomplete to the left of the straight line joining 
the points E, and A in figures l ( a )  and (b).) In figure l (6)  where X = 0 eliminates 
the coupling Hamiltonian If,, from equation (1) the sub-band quantum numbers n 
and the harmonic oscillator quantum numbers I are good quantum numbers for the 
problem. n counts the energy levels at 9 = 0’; I labels the branches of the Landau 
fans which open up from each sub-band with increasing tilt angle as the magnetic 
field orientation shifts from parallel to the interfaces to perpendicular to them. The 
decrease in the lowest sub-band energies with 19, which is stronger the higher the 
sub-band, is due to the reduction of U,,(z) with decreasing Bcos9. (At d = 90’ 
where UeR(z) = V for a/2 < lzl < L, and UeR(z) = 00 for IzI > L, we have the 
spectrum of a finite well in an infinitely deep well.) In the spectrum of figure l (a)  
where X = 1,  the effect of the coupling by H,, is essentially a lowering of the E(I9) 
curves and level repulsions a t  higher energies. The maximum deviation from the X = 0 
spectrum occurs at a tilt angle of d = 45’, where the coupling Hamiltonian If,, is at 
a maximum. With increasing distance of IJ from 45’ the coupling becomes less and 
less important and the energy branches of figures l(a) and (6) become more and more 
similar. Thus,  for energies E < V neglect of the bothersome H,, in equation (1) can 
be a reasonable approximation to start with in more complicated calculations, e.g. of 
many-body effects. This also becomes plausible from comparing the total potential 

G Man and R KCmmel 

w ( z , z , u ~ )  = o2(z2s in2~-X21s ind rcos I9+ t2cos2 tP )+  2m ~ ( r )  (12) 

for X = 1, figure 2(a),  with that for X = 0, figure 2(6). The relative unimportance of 
the coupling can also be seen from the probability densities I$(+, .)I2 of figure 3, com- 
puted numerically by inserting the ansatz of equation (10) into the exact Schrijdinger 
equation (1) with X = 1: 

(i) The probability densities of bound states with E < V deviate only relatively 
little from those one would have if the motion in the QW and the magnetic field were 
completely decoupled; there are only small distortions of the sub-band and harmonic 
oscillator distributions over the z--L plane. Thus, i t  still makes sense to  label these 
eigenstates at finite tilt angles by the quantum numbers n and I valid at 9 = 90’. (For 
the states with energies above V labelling according to their energetic order is more 
appropriate.) 

(ii) Only relatively few basis functions pn(z) and q,(z) are needed for the compu- 
tation of 1$12: If the wavefunction has no bulges in the z-direction and I, bulges in 
the z-direction one has to take into account the first no + 2 basis functions vp,(r) and 
the first I ,  + 2  hasis functions a(z) .  More basis functions lead to improvements which 
cannot be seen within the drawing accuracy of figure 3. 
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Figure 2, Total potential W(z,a,ff) with (a) and without ( 6 )  the coupling H,, at 
4 = 60° for B = 0.9 T, V = 7.6 meV, s = 15 nm. 

Examples of quasi-localized states with E > V are shown in figures 4(a)-(c). 
As in figure 3 the probability density distributions reflect the point symmetry of the 
Hamiltonian given by equations (2)-(6). As in the case of a parallel magnetic field 
[Z] these localizations are caused by interferences. In figure 1(a) they are situated 
energetically in the range between 150 and 200 meV. There the spectrum exhibits 
small energy gaps which are essentially due to size quantization in the heterojunction 
of finite width ZL,. 

The density of states (per unit area) is calculated numerically from 

(13a) 

(13b) 

2 
g ( E )  = - c & ( E  - 41) 

2 2L 

2 

2L=2L, "fk" 

- - w + F / d k y 6 ( E - E n t )  

P c  &E - E",) (134 =- 
%2L, n{ 

where 2L,2Ly is the cross section of the heterojunction and the factor 2 counts the 
spin states. Here we have used the fact that E,, is degenerate in k ,  so that 

2- 

with 

L. 
(14) 

(15) 

dk, 6(E - En,) = 6(E - EnI)ZLy- eBz dzo = pS(E - En,) 2L 2 s  1 sfi LL* 
p := 2LzZLy- eB* 

sh 
being the degeneracy factor. The resulting density of states is shown in figure 5 for 
two tilt angles, The density of states g(E) a t  tilt angle 19 = 20' recalls the step- 
wise density of states of a quasi-two-dimensional electron gas at 8 = O', whereas for 
t9 = 60° g(E) indicates the approach to the Landau level structure as 8 -+ 90". 

4. Magnetization 

With the numerically calculated energy spectrum E,, shown in figure l (a )  we compute 
the thermodynamic potential 

(16) 0 = -2k,T c In (1 + exp (7)) P - E", . 
nfk. 
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Figure 4. Probability density distributions of 
states with energies above V at 9 = 60' local- 
ized essentially (a) ,  ( b )  in the barrier or (c) on a 
contour around the minimum of the total poten- 
tial W(z.a, 9). 

Figure 5. Density of states g ( E )  for 9 = 20' 
and 9 = 60' calculated from equation (13) with 
the delta functiom being replaced by Gaussians 
of line width 2 meV. 

The z and t components M,  and M, of the magnetization at  temperature T and 
chemical potential p result from 

*.* (170) 

(17b) 

M =-(E) u,p,T,B.,.=conatant 

1 - 
- 2 nlk, c 1 + exp((EnI - p ) / k , T )  (-2) 

U = 2L,2Lg2L,  is the volume of the sample. The integration over k, is performed 
as in equation (13) and, for the sake of simplicity, we only consider the temperature 
T = 0 K. We obtain the magnetization per unit area 

(18) -I-> M,, eB 8E"I 
2L,2Ly - ali E%- n, E d a s , ,  

where e ( p  - EnI)  is the step function. The results of the numerical evaluation of 
equation (18) are shown in figures 6(a)-(c). 

The smooth oscillations of the magnetization in a parallel field (figure 6(a)) are 
very similar to the ones discussed and explained in [l]. The only difference is the 
drop of the second oscillation minimum to the M,  = 0 level. This effect is caused by 
the finite thickness 2L, of the heterojunction. (The electrons in higher energy levels 
penetrate deeper into the GaAs barrier and feel the infinite surface potential walls. 
This gives rise to a magnetization similar to that of an infinitely deep QW.) The first 
(second) oscillation corresponds to the population of the states in the first (first and 
second) sub-band, where the decrease is due to the second (negative) term in 

(19) dE"(Z0) - aE" 20 aE" dB, - a B , ~ z o - ~ ~ ~  ' 

B. 
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Figure 6. Oscilbting negativemagnetization per wlit area -M,IZL,ZL, at various 
tilt angles 0 as a function of the dienlical potential p at B = 15 T. The QW is 
(I = 15 mm wide, the width of the heterojunction is ZL, = 70 and the barrier height 
is V = 147 meV. 

Note that in the case of a parallel field E = e,B, the quantum number 1 in (18) is 
replaced by the quantum number zo = hk,/eB,. 

At finite tilt angles the shift of an energy level E,,, with the magnetic field com- 
ponent E,, (Y = z, y, is given by 

so that 
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Since aE,,fBB > 0 always and aE,,,/aff > 0 nearly always, aE,,/BB, is always 
positive, and the magnetization M, increases (stepwise) with p. We do not bother 
to show it here. Much more interesting is the variation of the magnetization -M,  
shown in figures 6 ( b )  and (c). At I9 = 20’ the first oscillation of the 9 = 0” case is still 
‘remembered’. The steps occnr whenever the chemical potential moves through one 
of the energy levels E,, of figure l ( a ) .  With increasing I ,  aEl,/a19 increases so that 
the negative contribution to aE,,/aB, in equation (22) gains more and more weight 
and finally leads to the decrease of -Ma according to equation (18). As the chemical 
potential moves across the lowest branch E,, of the second Landau fan, aE2,/a@ is 
small and -M, rises again. The next branch to be crossed by p, however, originates 
from the first Landau fan with n = 1 and I = 8. Its I9 derivative in equation (22) 
is large, and the negative magnetization drops drastically. The following level to be 
crossed again belongs to the n = 2 set, the I9 derivative is small, and the magnetization 
jumps up. This rise and fall continues as the the chemical potential moves through 
the alternating levels from different Landau branches. The same story is basically 
true at I9 = 60°, figure 6 ( c ) ;  the I9 = 0’ case is hardly ‘remembered’, and the wider 
gaps between the branches in figure I ( a )  are reflected by wider separations between 
the jumps in the magnetization. 

5. Discussion 

There are degenerate localized states above the barrier edge of a QW within a finite 
size heterojunction in a tilted magnetic field. Their energies may be separated by 
small energy gaps from the rest of the spectrum. This separation, however, is essen- 
tially an effect of size quantization and increases with decreasing width 2L, of the 
heterojunction. The degeneracy increases proportional to the perpendicular field 5, 
and may favour overpopulation at certain energies under appropriate ‘pumping’ con- 
ditions. Nevertheless we are sceptical whether a sufficiently strong non-equilibrium 
distribution of electrons-which would be the basis for a magnetically tunable laser- 
can be produced. Far more interesting from a technological point of view are the 
sharp jumps of the magnetization as a function of the chemical potential in tilted 
fields. They could provide the ‘yes-no’ elements of a dissipation free switching device. 
Although our calculations have been performed so far for rectangular QWs only, we 
are quite positive that magnetization jumps will also occur in MOSFETs in tilted fields 
where the chemical potential can be shifted easily by changing the gate voltage. Finite 
temperatures will soften the jumps somewhat. The main problem is how the jumps 
will be influenced by many-body effects. This is the subject of ongoing research. 
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