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Abstract. The energy spectrum, the density of states, the electron probability
distributions and the magnetization of a Ga; —zAl; As—GaAs-Gay._ Al As quantum
well in strong tilted magnetic fields B = (B:,0, B;) are calculated. It is shownm
that the spectrum and the probability densities of the states bound in the qguantum
well would change little if the coupling Hamiltonian =~ B.B; were to be neglected.
Localized states appear above the barrier edge. The magnetization parallel to the
layer interfaces exhibits oscillations and sharp jumps as & function of the chemical
potential. It remains to be seen whether these jumps may serve as the basis for a
dissipation free switching device.

1. Introduction

Recent investigations of the energy spectrum and the magnetization of quantum wells
(Qws) in high magnetic fields oriented parallel to the interfaces showed the existence
of localized states and oscillations of the magnetization as a function of the chemical
potential [1, 2], see also [3, 4]. Localization occurs in the barrier for certain values
of the (quasi-)continuous momentum kk, of motion parallel to the interfaces and
perpendicular to the field. Since the total energy varies continuocusly with k, no energy
gaps separate the localized barrier states from the delocalized ones. Therefore, it will
be quite impossibie to achieve a stable overpopulation of these states which might be
desirable for a magnetically tunable laser. However, if a magnetic field component B,
normal to the interfaces is present, and if one takes into account size quantization due
to the finite width of the heterojunction, one may have degenerate localized states in
the barriers, or at the rim of the effective total potential, separated by energy gaps
from the neighbouring states. This can be concluded from the energy spectra and
charge density distributions computed in this article for various tilt angles ¥ of the
magnetic field B, Furthermore, we compute the z-component of the magnetization
as a function of the chemical potential and interpret its oscillations and discontinous
jumps with the help of the energy spectrum.

2. Method

We consider a Ga,__ Al As-GaAs-Ga,;_,Al As heterojunction of total width 2L,.
The GaAs layer extends between —a/2 < z < a/2. We model the system by a scalar
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potential U{z} with U(z) = 0 for |2| < af2, U(z) = V for ¢/2 < |¢| < L, and
U(z) = oo for |2{ > L,. The tilted magnetic field is B = ¢, Bcos? + ¢, Bsind. For
the vector potential we choose a gauge such that A = e (zBsinY — 28cos¥).

For the envelope wavefunction in the effective mass approximation we make the
ansaiz ¥(z,y,z) = (1/v27) exp{ik, y}¥(z, z}. After substituting z by x + z; where

zg 1= —hik, /eBsin ¢ we obtain the Schradinger equation

(Hy + H, + H. )¥(z,2) = Bp(z, 2). 0
The three components of the total Hamiltonian are

k2 a?

Hy= -5 +P(x) ()

with
_(eB) 5. o
P(z) = gy % S0 ¥

being the harmonic oscillator potential due to B, .

K2 9*

Hz = _2—m§z_2+U°ﬁ(z) (4)
with
3
Ua(z) = (—c%z? cos? 9 + U(#) (5)

being the superposition of the QW potential and the harmonic oscillator potential due
to B,. The coupling Hamiltonian

2
H,, = -A2%z cos Pz sind (6)

couples the motion in the harmonic oscillator potential P(z) of H,, with the motion
in the eflective potential U,g(z) of H,. If we had a parabolic QW potential U(z),
equation (1) could be decoupled by a suitable coordinate transformation [5]. This
cannot be done in our case of a rectangular QW. Therefore, A has been introduced
formally into equation (6) in order to analyse the influence of H,,: if H,, is taken
into acount A =1, and if H_, is neglected A = 0. Since %, does not appear explicitly
in equation (1), we get the same eigenvalues for different k,, i.e. each eigenvalue has
a degeneracy (per unit area) which turns out to be eBsind /2rh.

The calculation of the eigenfunctions and eigenstates is done in two steps:

(i) First we set A = 0 in H_, in equation (6). Then we can separate equation (1)
and solve

H,on(z) = Efny(2) M

by the harmonic oscillator eigenfunctions n;(2} with the eigenvalues

- 1\ . eB |, _
Ej _(!—E)ﬁ-—ﬁsmﬂ 1=1,2,3.... (8)
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In order to solve
H,p,(2) = Efp,(2) n=123... (9)

we develop its eigenfunctions ¢, () in terms of the (trigonometric) eigenfunctions of
an infinite potential well of width 2L,. Thus, we obtain a representation of H, by
matrix elements formed with the trigonometric functions. This matrix is being trans-
formed into a tridiagonal matrix by the Lanczos method [6] and finally diagonalized
numerically.

(ii) In the second step we set A = 1 and take the functions m(z) and ¢, (2) as the
complete basis for the expansion of the solution ¥(z, 2) of equation (1):

U(z,2) = ) aymiz)e, (2). (10)
nil

The advantage of this procedure is that H, and H, are already diagonal, whereas H_
can be arranged into a band matrix and diagonalized easily.

For the numerical calculations the Schrédinger equation (1) is written in di-
mensionless coordinates (,%2) = (z/a,z/a), energies £ = E2ma® /A2, potentials
V = V2ma®/k?, and fields B = Bea®/h. Thus the spectrum obtained for one set
of parameters B and e has exactly the same structure as the spectrum for a second
set of parameters B’ and «’ if
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Figure 1. (2) Energy spectrum of an isolated Gag sAlp.2 As—GaAs—GagaAlg.zAs
QW in a magnetic field B = 15 T (for A = 1) as a function of the tilt angle 4. (Teo
the left of the line E;~A states are missing, see text.} (4} Energy spectrum for the
same sitnation as in {2}, but the coupling Hamiltonian H, is neglected (A = 0).



8240 G Marz and R Kimmel
3. Energy spectrum and density of states

We assume the following GaAs-Ga,_ _Al As QW parameters: The well width is a =
15 nm, the band-offset is 60%, and 2 = 0.20 so that the potential height is V' =
147 meV [7]. An effective mass m = 0.0665 m,, is assumed, m, is the free electron mass.
For these parameters and for B = 15 T we get the energy spectra shown in figures 1(a)
and (5) where the spin splitting is neglected. According to equation {11) these are also
the spectra for, e.g., a' = 20 nm, B' = 8.4 T, or ¢ = 26 nm, B” = 5.4 T, if the energy
scale is multiplied by (a/a')? or (a/a”)?. For the sake of clarity figures 1(a) and (5)
only show the tilt angle dependence of those energy levels which evolve from the 15
lowest states of the quasi-continuum in each of the first three sub-bands at tilt angle
¥ = 0°. (Thus, the energy spectrum is incomplete to the left of the straight line joining
the points E; and A in figures 1(2) and (b).) In figure 1{b) where A = 0 eliminates
the coupling Hamiltonian H_, from equation (1) the sub-band quantum numbers n
and the harmonic oscillator quantum numbers { are good quantum numbers for the
problem. n counts the energy levels at ¥ = 0°; ! Iabels the branches of the Landau
fans which open up from each sub-band with increasing tilt angle as the magnetic
field orientation shifts from parallel to the interfaces to perpendicular to them. The
decrease in the lowest sub-band energies with ¢, which is stronger the higher the
sub-band, is due to the reduction of U,g(2) with decreasing B cos?. (At ¢ = 90°
where Uq(z) = V for a/2 < |z] < L, and Uq4(z) = oo for |2] > L, we have the
spectrum of a finite well in an infinitely deep well.) In the spectrum of figure 1(a)
where A = 1, the effect of the coupling by H_, is essentially a lowering of the E(9)
curves and level repulsions at higher energies. The maximum deviation from the A =0
spectrum occurs at a tilt angle of ¥ = 45°, where the coupling Hamiltonian H_, is at
a maximum. With increasing distance of 4 from 45° the coupling becomes less and
less important and the energy branches of figures 1(a) and (%) become more and more
similar. Thus, for energies £ < V neglect of the bothersome H_, in equation (1) can
be a reasonable approximation to start with in more complicated calculations, e.g. of
many-body effects. This also becomes plausible from comparing the total potential
(eBY 2. 2 : 2.2

Wiz, z,8)= —27—;1—(3: sin® ¥ — A2z sin ¥z cos ¥ + 2% cos® 3+ U(z) (12)
for A = 1, figure 2(a}, with that for A = 0, figure 2(b}. The relative unimportance of
the coupling can also be seen from the probability densities iz, z)|® of figure 3, com-
puted numerically by inserting the ansatz of equation (10} into the exact Schrédinger
equation (1) with A = 1:

(i) The probability densities of bound states with E < V deviate only relatively
little from those one would have if the motion in the QW and the magnetic field were
completely decoupled; there are only small distortions of the sub-band and harmonic
oscillator distributions over the z—z plane. Thus, it still makes sense to label these
eigenstates at finite tilt angles by the quantum numbers n and I valid at ¢ = 90°. (For
the states with energies above V labelling according to their energetic order is more
appropriate.)

(i) Only relatively few basis functions @, (z) and n,(z) are needed for the compu-
tation of |¢|%: If the wavefunction has n, bulges in the z-direction and I bulges in
the z-direction one has to take into account the first ny + 2 basis functions y_(#) and
the first {,-+ 2 basis functions ;,(#). More basis functions lead to improvements which
cannot be scen within the drawing accuracy of figure 3.
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Figure 2, Total potential W(z, z,9) with {2} and without (§) the coupling Ha.» at
9=60°for B=09T,V =7.6meV,g=15nm.

Examples of quasi-localized states with E > V are shown in figures 4(a)—(c).
As in figure 3 the probability density distributions reflect the point symmetry of the
Hamiltonian given by equations (2)-(6). As in the case of a parallel magnetic field
[2] these localizations are caused by interferences. In figure 1(a) they are situated
energetically in the range between 150 and 200 meV. There the spectrum exhibits
small energy gaps which are essentially due to size quantization in the heterojunction
of finite width 2L,.

The density of states (per unit area) is calculated numerically from

2
9(E) = 3T.3L, > sE-E,) (13a)
alk,
9 2L,
= 3L, 2 %/dkya(z«:-g,,,) (13b)
2
= m?% SE-E,) (13¢)

where 2L 2L, is the cross section of the heterojunction and the factor 2 counts the
spin states. Here we have used the fact that E,; is degenerate in k, so that

2L eB, [
o /dky §(E = Ep) = §(E — E)2Ly—= [_L dzo = p§(E — Ey,) (14)
with
- eB,
pi= 2L, 2L, (15)

being the degeneracy factor. The resulting density of states is shown in figure 5 for
two tilt angles. The density of states g(E) at tilt angle ¥4 = 20° recalls the step-
wise density of states of a quasi-two-dimensional electron gas at 9 = 0°, whereas for
¥ = 60° g(E) indicates the approach to the Landau level structure as 9 — 90°.

4. Magnetization

With the numerically calculated energy spectrum E, ; shown in figure 1(a) we compute
the thermodynamic potential

=—2kxT > In (1+exp (”;ﬁ"‘)). (16)
B

nlky
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Figure 4. Probability density distributions of Figure 5. Density of states g(E) for ¥ = 20°
states with energies above V at ¥ = 60° local- and ¥ = 60° calculated from equation (13) with
ized essentially (a), () in the barrieror (¢} ona  the delta functions being replaced by Gaussians
contour around the minimum of the total poten-  of line width 2 meV.

tial W(z, z, 9).

The z and z components M, and M, of the magnetization at temperature 7' and
chemical potential g result from

E1y)
Mx,z == (33;,; )U M T B S anatant (170)
= 9E,
2.% 1+ exp((Enz 1)/ kpT) ( aB,',) (17b)

v = 2L 2L 2L, is the volume of the sample. The integration over k, is performed
as in equation (13) and, for the sake of simplicity, we only consider the temperature
T = 0 K. We obtain the magnetization per unit area

MI:
T 2L,2L, whz Ou-E

where O(p — E,;) is the step function. The results of the numerical evaluation of
equation (18) are shown in figures 6(a)—(c).

The smooth oscillations of the magnetization in a parallel field (figure 6(a)) are
very similar to the ones discussed and explained in [1]. The only difference is the
drop of the second oscillation minimum to the M, = 0 level. This effect is caused by
the finite thickness 2L, of the heterojunction. (The electrons in higher energy levels
penetrate deeper into the GaAs barrier and feel the infinite surface potential walls.
This gives rise to a magnetization similar to that of an infinitely deep QW.) The first
(second) oscillation corresponds to the population of the states in the first (first and
second) sub-band, where the decrease is due to the second (negative) term in

_ % OE,
B, 0z, 5

(18)

dE,(20) _ OE,
iB, 0B

P’

(19)
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Figure 6. Oscillating negative magnetization per unit area — My /2Lz2L, at various
tilt angles ¥ as a function of the chemical potential g at B = 15 T. The Qw is
a = 15 nm wide, the width of the hetercjunction is 2L, = 7a and the barrier height
is V =147 meV.

Note that in the case of a parallel field B = e_ B, the quantum number [ in (18} is
replaced by the quantum number z, = Ak, /eB,.

At finite tilt angles the shift of an energy level E_; with the magnetic field com-
ponent B, & = z,y, is given by

d€,, OF,| 0B GE | 0¥ (20)
8B, ~ 8B | 8B, a9 | OB,
) ¢ B B
so that

8E, 1 8E, 1 JE, (21)
8B, ~ sind &B . Beosd ¢

8E, 1 8E,| 1 d8&y, (22)
0B, ~ cos?d 3B . Bsind &4
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Since §E,;/0B > 0 always and 8E,,/8¢ > O nearly always, 8E,,/8B, is always
positive, and the magnetization M, increases (stepwise} with u. We do not bother
to show it here. Much more interesting is the variation of the magnetization —M,
shown in figures 6(b) and (¢). At = 20° the first oscillation of the ¥ = 0° case is stil}
‘remembered’. The steps occur whenever the chemical potential moves through one
of the energy levels By, of figure 1(e}. With increasing {, 9F;/8¥ increases so that
the negative contribution to 3E,;/8B, in equation (22) gains more and more weight
and finally leads to the decrease of —M, according to equation (18). As the chemical
potential moves across the lowest branch E,; of the second Landau fan, 8E,;/39 is
small and — M, rises again. The next branch to be crossed by i, however, originates
from the first Landau fan with n = 1 and I = 8. Its ¥ derivative in equation (22)
is large, and the negative magnetization drops drastically. The following level to be
crossed again belongs to the n = 2 set, the ¥ derivative is small, and the magnetization
jumps up. This rise and fall confinues as the the chemical potential moves through
the alternating levels from different Landau branches. The same story is basically
true at ¢ = 60°, figure 6(c); the ¥ = 0° case is hardly ‘remembered’, and the wider
gaps between the branches in figure 1(a) are reflected by wider separations between
the jumps in the magnetization.

5. Discussion

There are degenerate localized states above the barrier edge of a QW within a finite
size heterojunction in a tilted magnetic field. Their energies may be separated by
small energy gaps from the rest of the spectrum. This separation, however, is essen-
tially an effect of size quantization and increases with decreasing width 2L, of the
heterojunction. The degeneracy increases proportional to the perpendicular field B,
and may favour overpopulation at certain energies under appropriate ‘pumping’ con-
ditions. Nevertheless we are sceptical whether a sufficiently strong non-equilibrium
distribution of electrons—which would be the basis for a magnetically tunable laser—
can be produced. Far more interesting from a technological point of view are the
sharp jumps of the magnetization as a function of the chemical potential in tilted
fields. They could provide the ‘yes-no’ elements of a dissipation free switching device.
Although our calculations have been performed so far for rectangular QWs only, we
are quite positive that magnetization jumps will also occur in MOSFETSs in tilted fields
where the chemical potential can be shifted easily by changing the gate voltage. Finite
temperatures will soften the jumps somewhat. The main problem is how the jumps
will be influenced by many-body effects. This is the subject of ongoing research.
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